Bounds on Genus and Geometric Intersections from Cylindrical End Moduli Spaces
نویسنده
چکیده
In this paper we present a way of computing a lower bound for genus of any smooth representative of a homology class of positive self-intersection in a smooth four-manifold X with second positive Betti number b+2 (X) = 1. We study the solutions of the Seiberg-Witten equations on the cylindrical end manifold which is the complement of the surface representing the class. The result can be formulated as a form of generalized adjunction inequality. The bounds obtained depend only on the rational homology type of the manifold, and include the Thom conjecture as a special case. We generalize this approach to derive lower bounds on the number of intersection points of n algebraically disjoint surfaces of positive self-intersection in manifolds with b 2 (X) = n.
منابع مشابه
On Atkin-Lehner correspondences on Siegel spaces
We introduce a higher dimensional Atkin-Lehner theory for Siegel-Parahoric congruence subgroups of $GSp(2g)$. Old Siegel forms are induced by geometric correspondences on Siegel moduli spaces which commute with almost all local Hecke algebras. We also introduce an algorithm to get equations for moduli spaces of Siegel-Parahoric level structures, once we have equations for prime l...
متن کاملIntersections of Tautological Classes on Blowups of Moduli Spaces of Genus-One Curves
We give two recursions for computing top intersections of tautological classes on blowups of moduli spaces of genus-one curves. One of these recursions is analogous to the well-known string equation. As shown in previous papers, these numbers are useful for computing genusone enumerative invariants of projective spaces and Gromov-Witten invariants of complete intersections.
متن کاملReal Gromov-Witten Theory in All Genera and Real Enumerative Geometry: Computation
The first part of this work constructs positive-genus real Gromov-Witten invariants of realorientable symplectic manifolds of odd “complex” dimensions; the second part studies the orientations on the moduli spaces of real maps used in constructing these invariants. The present paper applies the results of the latter to obtain quantitative and qualitative conclusions about the invariants defined...
متن کاملQuotients by non-reductive algebraic group actions
Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...
متن کاملCanonical Models of Filtered A∞-algebras and Morse Complexes
In the book [6], the authors studied the moduli spaces of bordered stable maps of genus 0 with Lagrangian boundary condition in a systematic way and constructed the filtered A∞-algebra associated to Lagrangian submanifolds. Since our construction depends on various auxiliary choices, we considered the canonical model of filtered A∞-algebras, which is unique up to filtered A∞-isomorphisms. The a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002